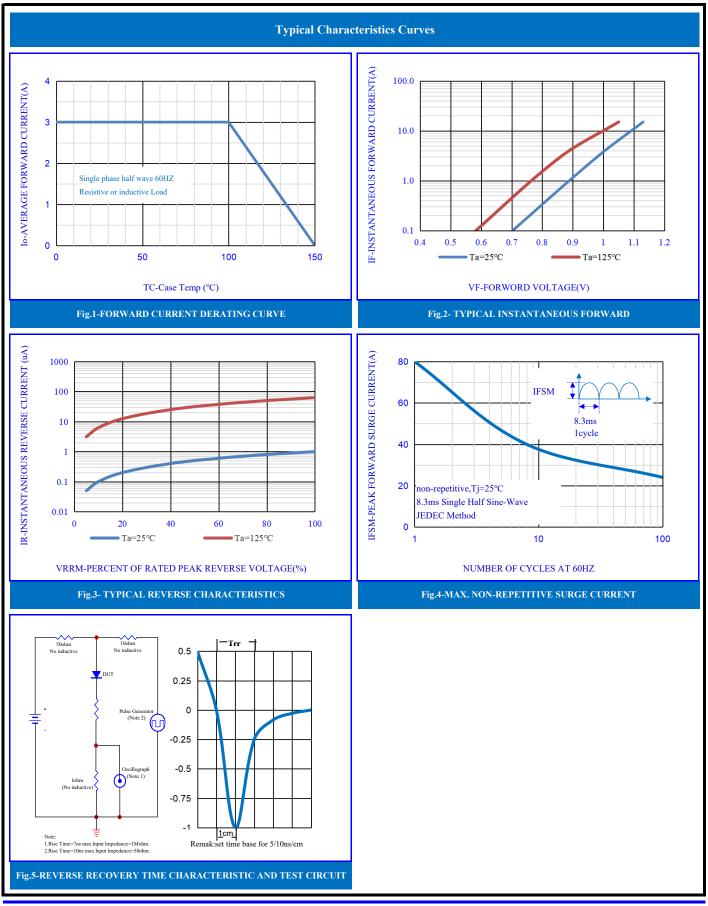

								(HF) (F	
			FAST RE	ECOVERY REC	TIFIER G	PP CHIP		halogen-free Pt	D-Frce COMPLI
VOLTAGE:	1000	Volts	CURRENT:	3 Ar	npers				
EATURES						TYPICAL A	PPLICATIO	NS	
Glass Passivated C	hip Junction				I	 PD Fast 			
Super Fast Recove	-	gh Efficiency					Power Supply		
Low Leakage Curr	-					 LED Dri 			
High Forward Surg			ility				quipment		
Aechanical Data	a iip Drawing				C	Chip Dimensions			
-	A	\rightarrow			Symbol	-	ale	Tolerance	Unit
1			Chip Size		А	2.1	08	±0.050	mm
			Pad Size		В	1.4	28	±0.020	mm
			Chip Thickness		С	0.2	255	±0.050	mm
						4	5	±0.10	in
в			wafer Size			12	27	±2.54	mm
			Chip Surface Coating						
			Top Metal Ni-Ni-Au						
			1		111 111 114				
			Back Metal		Ni-Ni-Au				
	B A 				1	SS+LTO			
<u>↓</u>	A P+ N N+ B		Back Metal Passivation		Ni-Ni-Au	SS+LTO			
Aaximum Ratin	A P+ N N+ B	C Unless O	Back Metal Passivation		Ni-Ni-Au SIPOS+GLA			500 1	
√aximum Ratin arameter	A P+ N N+ B ngs (Ta=25°		Back Metal Passivation	ed) Fonditions	Ni-Ni-Au SIPOS+GLA Symbol		5SP-M84FDS-U3	50SA	Unit
Aaximum Ratin arameter faximum Repetitive I	A P+ N N+ B ngs (Ta=25° Peak Reverse V	Voltage	Back Metal Passivation	conditions	Ni-Ni-Au SIPOS+GLA Symbol V _{RRM}		1000	50SA	V
Aaximum Ratin arameter faximum Repetitive I	A P+ N N+ B ngs (Ta=25° Peak Reverse V	Voltage	Back Metal Passivation Ptherwise Specific Test C	@TC= 100 °C	Ni-Ni-Au SIPOS+GLA Symbol V _{RRM} I _{F(AV)}			50SA	
Aaximum Ratin arameter faximum Repetitive I faximum Average Fo	A P+ N N+ B ngs (Ta=25° Peak Reverse V prward Rectified	Voltage	Back Metal Passivation Ptherwise Specific Test C 8.3ms Single Half S	conditions	Ni-Ni-Au SIPOS+GLA Symbol V _{RRM} I _{F(AV)}		1000	50SA	V
Aximum Ratin arameter faximum Repetitive I faximum Average Fo eak Forward Surge C	A P+ N B ngs (Ta=25° Peak Reverse V orward Rectified	Toltage d Current	Back Metal Passivation Ptherwise Specific Test C 8.3ms Single Half S	@TC= 100 °C ine-wave Superimpose ate Load	Ni-Ni-Au SIPOS+GLA Symbol V _{RRM} I _{F(AV)}		1000 3	50SA	V A
Aaximum Ratin arameter Iaximum Repetitive I Iaximum Average For eak Forward Surge C Clectrical Chara	A P+ N B ngs (Ta=25° Peak Reverse V orward Rectified	Toltage d Current	Back Metal Passivation Passivation Otherwise Specific Test C 8.3ms Single Half S On R Nless Otherwise S	@TC= 100 °C ine-wave Superimpose ate Load pecified)	Ni-Ni-Au SIPOS+GLA Symbol V _{RRM} I _{F(AV)} I I _{FSM}	N5C	1000 3		V A A
Aximum Ratin arameter Maximum Repetitive I Maximum Average For eak Forward Surge C Electrical Chara	A P+ N B ngs (Ta=25° Peak Reverse V orward Rectified	Toltage d Current	Back Metal Passivation Passivation Otherwise Specific Test C 8.3ms Single Half S On R Nless Otherwise S	@TC= 100 °C ine-wave Superimpose ate Load	Ni-Ni-Au SIPOS+GLA Symbol V _{RRM} I _{F(AV)}	N5C	1000 3 80		V A
Aaximum Ratin arameter Iaximum Repetitive I Iaximum Average Fo eak Forward Surge C Clectrical Chara arameter	A P+ N B ngs (Ta=25° Peak Reverse V orward Rectified Current	′oltage d Current ℃a=25°C Ur	Back Metal Passivation Passivation Otherwise Specific Test C 8.3ms Single Half S On R Nless Otherwise S	@TC= 100 °C @TC= 100 °C ine-wave Superimpose ate Load pecified) Conditions	Ni-Ni-Au SIPOS+GLA Symbol V _{RRM} I _{F(AV)} I I Symbol	N50	1000 3 80 GSP-M84FDS-U3	50SA	V A A Unit
Aaximum Ratin arameter Iaximum Repetitive I Iaximum Average Fo eak Forward Surge C Clectrical Chara arameter	A P+ N B ngs (Ta=25° Peak Reverse V orward Rectified Current	′oltage d Current ℃a=25°C Ur	Back Metal Passivation Dtherwise Specifie Test C 8.3ms Single Half S On R hless Otherwise S Test C	@TC= 100 °C ine-wave Superimpose ate Load pecified)	Ni-Ni-Au SIPOS+GLA Symbol V _{RRM} I _{F(AV)} I I _{FSM}	N50	1000 3 80 5SP-M84FDS-U3 Typ.	505A Max.	V A A
Aaximum Ratin arameter faximum Repetitive I faximum Average Fo eak Forward Surge C Electrical Chara arameter astaneous Forward V faximum DC Reversi	A P+ N B ngs (Ta=25° Peak Reverse V prward Rectified Current Curren	′oltage d Current C a=25°C Un de (note1)	Back Metal Passivation Passivation Passivation Passivation Passivation Test C Rest C Rest C Ta=25°C	@TC= 100 °C ine-wave Superimpose ate Load pecified) conditions I _F = 3.0 A V _R =V _{RRM}	Ni-Ni-Au SIPOS+GLAS Symbol V _{RRM} I _{F(AV)} I I _{FSM} Symbol V _F	N50	1000 3 80 GSP-M84FDS-U3 Typ. 0.93	50SA Max. 0.98	V A A Unit
Aaximum Ratin arameter faximum Repetitive I faximum Average Fo eak Forward Surge C Electrical Chara arameter istaneous Forward V faximum DC Reversi- ilocking Voltage (No	A P+ N B ngs (Ta=25° Peak Reverse V orward Rectified Current Acteristcs (T oltage Per Dioc e Current At Ra te 1)	′oltage d Current C a=25°C Un de (note1)	Back Metal Passivation Ptherwise Specific Test C 8.3ms Single Half S On R Ness Otherwise S Test C Ta=25°C Ta=125°C	@TC= 100 °C @TC= 100 °C ine-wave Superimpose ate Load pecified) Fonditions I _F = 3.0 A	Ni-Ni-Au SIPOS+GLA Symbol V _{RRM} I _{F(AV)} I I Symbol	N50	1000 3 80 5SP-M84FDS-U3 Typ. 0.93 0.81	50SA Max. 0.98 0.86	V A A Unit
Aximum Ratin Aximum Repetitive I Maximum Average For eak Forward Surge C Electrical Chara Parameter Instaneous Forward V Maximum DC Reverses Elecking Voltage (No	A P+ N B ngs (Ta=25° Peak Reverse V orward Rectified Current Acteristcs (T oltage Per Dioc e Current At Ra te 1)	′oltage d Current C a=25°C Un de (note1)	Back Metal Passivation Passivation Passivation Dtherwise Specific Test C 8.3ms Single Half S On R 8.3ms Single Half S On R 1ess Otherwise S Test C Ta=25°C Ta=25°C Ta=25°C Ta=25°C Ta=25°C	@TC= 100 °C ine-wave Superimpose ate Load pecified) conditions I _F = 3.0 A V _R =V _{RRM}	Ni-Ni-Au SIPOS+GLAS Symbol V _{RRM} I _{F(AV)} I I _{FSM} Symbol V _F	N50	1000 3 80 55P-M84FDS-U3 Typ. 0.93 0.81 0.10	505A Max. 0.98 0.86 1.00	V A A Unit
Aximum Repetitive I Aaximum Repetitive I Aaximum Average Fo Veak Forward Surge C Electrical Chara Parameter Instaneous Forward V Maximum DC Reverses Blocking Voltage (No Aaximum Reverse Re	A P+ N B ngs (Ta=25° Peak Reverse V orward Rectified Current Acteristcs (T oltage Per Dioc e Current At Rate te 1) provery Time	^r oltage d Current C a=25°C Un le (note1) nted DC	Back Metal Passivation Passivation Passivation Dtherwise Specific Test C 8.3ms Single Half S On R 8.3ms Single Half S On R 1ess Otherwise S Test C Ta=25°C Ta=25°C Ta=25°C Ta=25°C Ta=25°C	Conditions @TC= 100 °C ine-wave Superimpose ate Load pecified) Conditions I_F = 3.0 A V_R = V_{RRM} V_R = 80%* V_{RRM} 1.0A, I_{RR} =0.25A	Ni-Ni-Au SIPOS+GLAS Symbol V _{RRM} I _{F(AV)} I I _{FSM} Symbol V _F I _{RRM}	N50	1000 3 80 SSP-M84FDS-U3 Typ. 0.93 0.81 0.10 50.00	50SA Max. 0.98 0.86 1.00 100.00	V A A Unit V uA
Maximum Ratin arameter Maximum Repetitive I Maximum Average For eak Forward Surge C Electrical Chara arameter Instaneous Forward V Maximum DC Reverses Elocking Voltage (No Maximum Reverse Re Electrical Charae arameter	A P+ N B ngs (Ta=25° Peak Reverse V orward Rectified Current Acteristcs (Ta oltage Per Dioc e Current At Rate te 1) recovery Time cteristcs (Ta	'oltage d Current 'a=25°C Un de (note1) ated DC a=25°C Un	Back Metal Passivation Passivation Dtherwise Specific Test C 8.3ms Single Half S On R 1ess Otherwise S Test C Ta=25°C Ta=125°C Ta=25°C Ta=125°C Ta=25°C Ta=125°C I _F =0.5A, I _R =	Conditions @TC= 100 °C ine-wave Superimpose ate Load pecified) Conditions I_F = 3.0 A V_R = V_{RRM} V_R = 80%* V_{RRM} 1.0A, I_{RR} =0.25A	Ni-Ni-Au SIPOS+GLAS SIPOS+GLAS Symbol V _{RRM} I _{F(AV)} I I _{FSM} V _F I _{RRM} T _{RR}	N50	1000 3 80 SSP-M84FDS-U3 Typ. 0.93 0.81 0.10 50.00 400.00 SSP-M84FDS-U3	50SA Max. 0.98 0.86 1.00 100.00 500.00	V A A Unit V uA
Aximum Repetitive I Aaximum Repetitive I Aaximum Average Fo Peak Forward Surge C Peak Forward Surge C Electrical Chara Parameter Instaneous Forward V Maximum DC Reverses Blocking Voltage (No Maximum Reverse Re	A P+ N B ags (Ta=25° Peak Reverse V orward Rectified Current Acteristcs (T oltage Per Dioc e Current At Ra te 1) recovery Time cteristcs (T acteristcs (T covery Time)	'oltage d Current 'a=25°C Un de (note1) ated DC a=25°C Un	Back Metal Passivation Passivation Dtherwise Specific Test C 8.3ms Single Half S On R 1ess Otherwise S Test C Ta=25°C Ta=125°C Ta=25°C Ta=125°C Ta=25°C Ta=125°C I _F =0.5A, I _R =	Conditions @TC= 100 °C ine-wave Superimpose ate Load pecified) Conditions I_F = 3.0 A V_R = V_{RRM} V_R = 80%* V_{RRM} 1.0A, I_{RR} =0.25A	Ni-Ni-Au SIPOS+GLAS Symbol V _{RRM} I _{F(AV)} d I _{FSM} V _F V _F I _{RRM} T _{RR}	N50	1000 3 80 SSP-M84FDS-U3 Typ. 0.93 0.81 0.10 50.00 400.00 SSP-M84FDS-U3 to	50SA Max. 0.98 0.86 1.00 100.00 500.00	V A A Unit V uA nS

Niuhang Electronic

Technology Co., Ltd

Specification

For Approval


N5GSP-M84FDS-U350SA

FAST RECOVERY RECTIFIER GPP CHIP

Specification

alogen-free Pb-Frce COMPLIANT

N5GSP-M84FDS-U350SA

Specification For Approval

FAST RECOVERY RECTIFIER GPP CHIP

alogen-free Pb-Frce COMPLIANT

Disclaimer

- Reproducing and modifying informatiom of the document is prohibited without permission from niuhang Electronics Technology co., LTD
- Niuhang Electronics Technology co., LTD. reserves the rights to make changes of the content herein the document anytime without notification.
- Niuhang Electronics Technology co., LTD. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Niuhang Electronics Technology co., LTD. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation.Customers are responsible in comprehending the suitable use in particular applications.niuhang Electronics Technology co., LTD.makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments.transportation equipment, aerospae machinery et cetera.Customers usin or selling these products for use in such applications do so at their own rish and agree to fully indemnify niuhang Electronics Technology co., LTD.for any damages resulting resulting from such improper use or sale.
- When the appearance of the product and chip size does not change, in order to product the customer. quality, change the internal structure and the production process Niuhang can not notify